From 1 - 9 / 9
  • Exploring for the Future (EFTF) is an ongoing multiyear initiative by the Australian Government, conducted by Geoscience Australia, in partnership with state and Northern Territory government agencies and other partner research institutes. The first phase of the EFTF program (2016-2020) aimed to improve Australia’s desirability for industry investment in resource exploration in frontier or ‘greenfield’ regions across northern Australia. As part of the program, Geoscience Australia employed a range of both established and innovative techniques to gather new precompetitive data and information to develop new insight into the energy, mineral and groundwater resource potential across northern Australia. To maximise impact and to stimulate industry exploration activity, Geoscience Australia focussed activities in greenfield areas where understanding of resource potential was limited. In order to address this overarching objective under the EFTF program, Geoscience Australia led acquisition of two deep crustal reflection seismic surveys in the South Nicholson region, an understudied area of little previous seismic data, straddling north-eastern Northern Territory and north-western Queensland. The first survey, L210 South Nicholson 2D Deep Crustal Seismic Survey acquired in 2017, consisted of five overlapping seismic lines (17GA-SN1 to SN5), totalling ~1100 line-km. Survey L210 linked directly into legacy Geoscience Australia seismic lines (06GA-M1 and 06GA-M2) in the vicinity of the world-class Pb-Zn Century Mine in Queensland. The results from survey L210 profoundly revised our geological understanding of the South Nicholson region, and led to the key discovery of an extensive sag basin, the Carrara Sub-basin, containing highly prospective late Paleoproterozoic to Mesoproterozoic rocks with strong affinities with the adjacent Mount Isa Province and Lawn Hill Platform. To complement and expand on the outstanding success of the South Nicholson survey and to continue to explore the resource potential across the underexplored and mostly undercover South Nicholson and Barkly regions, a second seismic survey was acquired in late 2019, the Barkly 2D reflection survey (L212). The Barkly seismic survey comprises five intersecting lines (19GA-B1 to B5), totalling ~813 line-km, extending from the NT-QLD border in the south-east, near Camooweal, to the highly prospective Beetaloo Sub-basin in the north-west. The survey ties into the South Nicholson survey (L210), the recently acquired Camooweal 2D reflection seismic survey by the Geological Survey of Queensland and industry 2D seismic in the Beetaloo Sub-basin, leveraging on and maximising the scientific value and impact on all surveys. The Barkly reflection seismic data images the south-western margin of the Carrara Sub-basin and identified additional previously unrecognised, structurally-disrupted basins of Proterozoic strata, bounded by broadly northeast trending basement highs. Critically, the survey demonstrates the stratigraphic continuity of highly prospective Proterozoic strata from the Beetaloo Sub-basin into these newly discovered, but as yet unevaluated, concealed basins and into the Carrara Sub-basin, further attesting to the regions outstanding potential for mineral and hydrocarbon resources. This survey, in concert with the South Nicholson seismic survey and other complementary EFTF funded regional geochemical, geochronology and geophysical data acquisition surveys, significantly improves our understanding of the geological evolution, basin architecture and the resource potential of this previously sparsely studied region.

  • Public concerns have been raised about the potential for induced seismicity as state and territory governments lift moratoriums on hydraulic stimulation activities for the exploration and extraction of unconventional hydrocarbons. The Scientific Inquiry into Hydraulic Fracturing in the Northern Territory articulated the need for a traffic-light system “to minimise the risk of occurrence of seismic events during hydraulic fracturing operations” within the Beetaloo Sub-basin. A temporary seismic network (Phase 1) was deployed in late 2019 to monitor baseline seismic activity in the basin. Based on the data analysed herein (November 2019 – April 2021), no seismic events were identified within the area of interest suggesting that the Beetaloo Sub-basin is largely aseismic. Observations to date indicate that there is potential to identify events smaller than ML=1.5 within the basin. The recent installation of ten semi-permanent stations for continuous real-time monitoring will contribute to ongoing baseline monitoring efforts and support the implementation of an induced seismicity traffic-light system. The outcome of this study will be used to build knowledge about potential human-induced seismic activity in the region that may be associated with unconventional hydrocarbon recovery. This paper was presented at the Australian Earthquake Engineering Society 2021 Virtual Conference, Nov 25 – 26.

  • The first phase of the Australian Government's Exploring for the Future (EFTF) was a multi-year (2016-2020) $100.5 million initiative to increase northern Australia's desirability as a destination for industry investment to stimulate ‘greenfield’ resource exploration. In order to support this fundamental objective of the EFTF program, Geoscience Australia conducted acquisition of a diverse range of new precompetitive datasets across northern Australia, focussing on regions of unrecognised mineral, energy and groundwater resource potential. The Barkly 2D Deep Crustal Reflection Seismic Survey (L212) was acquired in 2019 as a major objective of the EFTF program in partnership with, and co-funded by, the NT Government under the Resourcing the Territory initiative. The Barkly Seismic Survey extends from the newly discovered Carrara Sub-basin in the South Nicholson Basin region to the south-eastern margins of the Beetaloo Sub-basin (Fomin, T., et al. 2019). The Barkly Seismic Survey images interpreted Paleoproterozoic to Mesoproterozoic successions extending from the Carrara Sub-basin to the highly prospective Beetaloo Sub-basin of the McArthur Basin. These successions are concealed by a persistent cover of up to 600 m of Paleozoic Georgina Basin sediments. Interpretation of the Barkly Seismic Survey established three informal geological domains, each defined by structural elements and/or basin characteristics (Southby et al, 2021). This data set contains an exported set of XYZ points from interpreted horizons (Southby et al 2022,) on the Barkly Seismic Survey (L212) in both two way time (TWT ms on PreSTM_19ga lines) and depth (m) re-interpreted on depth indexed PreSDM_19GA lines. The coordinate reference system for this dataset is WGS 1984 Australian Centre for Remote Sensing Lambert. Seismic reference datum is 350 m. The seismic reference datum are described in the EBCDIC headers of the SEGY files for each of the survey lines. Fomin, T., Costelloe, R.D., Holzschuh, J. 2019. L212 Barkly 2D Seismic Survey. Geoscience Australia, Canberra. https://pid.geoscience.gov.au/dataset/ga/132890 Southby, C., Rollet, N., Carson, C., Carr, L., Henson, P., Fomin, T., Costelloe, R., Doublier, M., Close, D. 2021. The Exploring for the Future 2019 Barkly Reflection Seismic Survey: Key discoveries and implication for resources. Geoscience Australia, Canberra. https://pid.geoscience.gov.au/dataset/ga/145107 Southby, C., Carson, C.J., Fomin, T., Rollet, N., Henson, P.A., Carr, L.K., Doublier, M.P., Close, D. 2022. Exploring for the Future - The 2019 Barkly Reflection Seismic Survey (L212). RECORD: 2022/009. Geoscience Australia, Canberra. http://dx.doi.org/10.11636/Record.2022.009

  • The Barkly Seismic Survey data images a complete seismic profile from the newly discovered Carrara Sub-basin of the South Nicholson region (e.g. Carr et al 2019) to the eastern margins of the Beetaloo Sub-basin. The survey, comprising five lines and a total of 813 line kms, links into the recently acquired EFTF South Nicholson Seismic Survey (L210; Henson et al 2018, Carr et al 2019, 2020) and the Camooweal 2D seismic survey completed by the Geological Survey of Queensland in 2019. The survey has identified Paleoproterozoic to Mesoproterozoic successions extending from the Carrara Sub-basin to the highly prospective Beetaloo Sub-basin of the McArthur Basin. These successions are concealed by a persistent cover of up to 600 m of Paleozoic Georgina Basin sediments. The recent completion of the MinEx CRC deep (1751 m) stratigraphic drillhole, NDI Carrara-1, located on the western margin of the Carrara Sub-basin have greatly improved the geological constraints on our preliminary stratigraphic interpretations. Our geological interpretation (Southby et al., 2021) of the Barkly Seismic Survey established three informal geological domains, each defined by dominant structural elements and/or basin characteristics. These informal domains are, from southeast to northwest. • Carrara domain: includes the south-western margins of the Carrara Sub-basin and a shoulder of shallow metamorphic basement, where overlying Proterozoic sediments of the Carrara Sub-basin are absent. The Carrara Sub-basin is as much as 10 000 m deep (Carr et al. 2019, 2020), and interpreted to comprise four superbasin sequences from oldest to youngest, the Paleoproterozoic Leichhardt (ca. 1790–1750 Ma), Calvert (ca. 1735–1690 Ma) and Isa (ca. 1670–1575 Ma) Superbasins and the Mesoproterozoic Roper Superbasin • Brunette Downs rift corridor (BDrc) is characterised by south-easterly deepening half-grabens, controlled by steeply dipping extensional bounding faults and minor sub-parallel subsidiary faults. The rift corridor has been divided into two rift packages containing the same sedimentary sequences as in the Carrara domain. The Leichhardt Superbasin successions show stratal thickening away from the bounding fault, to the northwest, whereas the Calvert Superbasin and, in particular, the Isa Superbasin, show marked southeast-directed stratal thickening into the bounding fault. However, most importantly these features share remarkably similar orientation, geometry and structural evolution to similar half grabens identified along strike in the South Nicholson and Lawn Hill Platform regions to the north-east, representing a continuous rift corridor extending over 400 km. • Beetaloo-McArthur domain: The seismic data reveals continuation of mostly flat lying Proterozoic sedimentary successions of the Beetaloo Sub-basin (the Redbank, Glyde and Nathan packages) over some 250 km southeast towards the BDrc. The southern boundary of this domain is a fault-bounded horst of Proterozoic basement rocks interpreted to be a concealed south-west extension of Murphy Province basement and which separates the Beetaloo-McArthur domain from the BDrc. The seismic data from the Barkly Seismic Survey, in conjunction the South Nicholson survey and the ongoing work on the Carrara 1 well, has identified similarities in sedimentary successions and architecture between the Carrara Sub-basin basin and the Beetaloo Sun-basin. It has also revealed extensive Paleoproterozoic successions between the Carrara and Beetaloo sub-basins. This work will greatly improve regional resource evaluations, and stimulate greenfield exploration across this part of northern Australia. Abstract/Poster presented at the 2022 Central Australian Basins Symposium IV (https://agentur.eventsair.com/cabsiv/)

  • The petroleum systems summary report provides a compilation of the current understanding of petroleum systems for the McArthur Basin, including the prospective Beetaloo Sub-basin. The contents of this report are also available via the Geoscience Australia Portal at https://portal.ga.gov.au/, called The Petroleum Systems Summary Assessment Tool (Edwards et al., 2020). Three summaries have been developed as part of the Exploring for the Future (EFTF) program (Czarnota et al., 2020); the McArthur Basin, the Canning Basin, and a combined summary of the South Nicholson Basin and Isa Superbasin region. The petroleum systems summary reports aim to facilitate exploration by summarising key datasets related to conventional and unconventional hydrocarbon exploration, enabling a quick, high-level assessment the hydrocarbon prospectivity of the region.

  • Geoscience Australia is Australia’s pre-eminent public sector geoscience organisation and is the Australian Government's trusted advisor on the geology and geography of Australia. Geoscience Australia is partnering with the Department of the Environment and Energy’s Geological and Bioregional Assessment (GBA) Program to provide information that will assess the environmental impacts of shale and tight gas development to inform regulatory frameworks and appropriate management approaches. Through this program, Geoscience Australia are conducting passive seismic monitoring deployments in the Beetaloo Sub-basin region of Northern Territory. This monitoring project aims to gather new information about natural seismic (i.e., earthquake) activity and to monitor any change to the environment due to planned hydraulic fracturing activities in the region. This information will be used by Geoscience Australia, the public and other organisations to build knowledge of potential human-induced seismic activity that may affect communities or the environment.

  • The Beetaloo Sub-basin, northern Australia, is considered the main depocentre of the 1000 km-scale Mesoproterozoic Wilton package of the greater McArthur Basin. The ca. 1.40-1.31 Ga upper Roper Group and the latest Mesoproterozoic to early Neoproterozoic unnamed group of the Beetaloo Sub-basin, together, record ca. 500-million-years of depositional history within the North Australia Craton. Whole-rock shale Sm-Nd and Pb isotope data reveal a dynamic interaction between sedimentary provenance and ancient tectonic geography. The ca. 1.35-1.31 Ga Kyalla Formation of the upper Roper Group is composed of isotopically evolved sedimentary detritus, whereas the upper portions of this formation contain more isotopically juvenile compositions. The increase in juvenile compositions also coincides with elevated total organic carbon (TOC) and phosphorous (P) content of these sediments, which are thought to reflect an increase in nutrient supply associated with the weathering of basaltic sources. Possible, relatively juvenile, basaltic sources include the Wankanki Supersuite in the western Musgraves and the Derim Derim-Galiwinku large igneous province (LIP). The transition into juvenile, basaltic sources directly before a supersequence-bounding unconformity, is here interpreted to reflect uplift and erosion of the Derim Derim-Galiwinku LIP, rather than an influx of southern, Musgrave sources. A new baddeleyite crystallization age of 1312.9 ± 0.7 Ma provides both a tight constraint on the age of this LIP, along with its associated magmatic uplift, as well as providing a minimum age constraint for Roper Group deposition. The supra-Roper Group lower and upper Jamison sandstones were both sourced from the Musgrave Province, at least 300 million years after deposition of the Kyalla Formation. An up-section increase in isotopically juvenile compositions seen in these rocks, are interpreted to document the continuous exhumation of the western Musgrave Province. The overlying Hayfield mudstone received detritus from both the Musgrave and Arunta regions, and its isotopic geochemistry reveals affinities with other early Neoproterozoic basins (e.g. Amadeus, Victoria and Officer basins), indicating the potential for inter-basin correlations.

  • Exploring for the Future (EFTF) is an ongoing multiyear initiative by the Australian Government, conducted by Geoscience Australia, in partnership with state and Northern Territory government agencies and other partner research institutes. The first phase of the EFTF program (2016-2020) aimed to improve Australia’s desirability for industry investment in resource exploration in frontier or ‘greenfield’ regions across northern Australia. As part of the program, Geoscience Australia employed a range of both established and innovative techniques to gather new precompetitive data and information to develop new insight into the energy, mineral and groundwater resource potential across northern Australia. To maximise impact and to stimulate industry exploration activity, Geoscience Australia focussed activities in greenfield areas where understanding of resource potential was limited. In order to address this overarching objective under the EFTF program, Geoscience Australia led acquisition of two deep crustal reflection seismic surveys in the South Nicholson region, an understudied area of little previous seismic data, straddling north-eastern Northern Territory and north-western Queensland. The first survey, L210 South Nicholson 2D Deep Crustal Seismic Survey acquired in 2017, consisted of five overlapping seismic lines (17GA-SN1 to SN5), totalling ~1100 line-km. Survey L210 linked directly into legacy Geoscience Australia seismic lines (06GA-M1 and 06GA-M2) in the vicinity of the world-class Pb-Zn Century Mine in Queensland. The results from survey L210 profoundly revised our geological understanding of the South Nicholson region, and led to the key discovery of an extensive sag basin, the Carrara Sub-basin, containing highly prospective late Paleoproterozoic to Mesoproterozoic rocks with strong affinities with the adjacent Mount Isa Province and Lawn Hill Platform. To complement and expand on the outstanding success of the South Nicholson survey and to continue to explore the resource potential across the underexplored and mostly undercover South Nicholson and Barkly regions, a second seismic survey was acquired in late 2019, the Barkly 2D reflection survey (L212). The Barkly seismic survey comprises five intersecting lines (19GA-B1 to B5), totalling ~813 line-km, extending from the NT-QLD border in the south-east, near Camooweal, to the highly prospective Beetaloo Sub-basin in the north-west. The survey ties into the South Nicholson survey (L210), the recently acquired Camooweal 2D reflection seismic survey by the Geological Survey of Queensland and industry 2D seismic in the Beetaloo Sub-basin, leveraging on and maximising the scientific value and impact on all surveys. The Barkly reflection seismic data images the south-western margin of the Carrara Sub-basin and identified additional previously unrecognised, structurally-disrupted basins of Proterozoic strata, bounded by broadly northeast trending basement highs. Critically, the survey demonstrates the stratigraphic continuity of highly prospective Proterozoic strata from the Beetaloo Sub-basin into these newly discovered, but as yet unevaluated, concealed basins and into the Carrara Sub-basin, further attesting to the regions outstanding potential for mineral and hydrocarbon resources. This survey, in concert with the South Nicholson seismic survey and other complementary EFTF funded regional geochemical, geochronology and geophysical data acquisition surveys, significantly improves our understanding of the geological evolution, basin architecture and the resource potential of this previously sparsely studied region.

  • <div>This dataset presents results of a first iteration of a 3D geological model across the Georgina Basin, Beetaloo Sub-basin of the greater McArthur Basin and South Nicholson Basin (Figure 1), completed as part of Geoscience Australia’s Exploring for the Future Program National Groundwater Systems (NGS) Project. These basins are located in a poorly exposed area between the prospective Mt Isa Province in western Queensland, the Warramunga Province in the Northern Territory, and the southern McArthur Basin to the north. These surrounding regions host major base metal or gold deposits, contain units prospective for energy resources, and hold significant groundwater resources. The Georgina Basin has the greatest potential for groundwater.</div><div>&nbsp;</div><div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. More information is available at http://www.ga.gov.au/eftf and https://www.eftf.ga.gov.au/national-groundwater-systems.</div><div>&nbsp;</div><div>This model builds on the work undertaken in regional projects across energy, minerals and groundwater aspects in a collection of data and interpretation completed from the first and second phases of the EFTF program. The geological and geophysical knowledge gathered for energy and minerals projects is used to refine understanding of groundwater systems in the region.</div><div>&nbsp;</div><div>In this study, we integrated interpretation of a subset of new regional-scale data, which include ~1,900 km of deep seismic reflection data and 60,000 line kilometres of AusAEM1 airborne electromagnetic survey, supplemented with stratigraphic interpretation from new drill holes undertaken as part of the National Drilling Initiative and review of legacy borehole information (Figure 2). A consistent chronostratigraphic framework (Figure 3) is used to collate the information in a 3D model allowing visualisation of stacked Cenozoic Karumba Basin, Mesozoic Carpentaria Basin, Neoproterozoic to Paleozoic Georgina Basin, Mesoproterozoic Roper Superbasin (including South Nicholson Basin and Beetaloo Sub-basin of the southern McArthur Basin), Paleoproterozoic Isa, Calvert and Leichhardt superbasins (including the pre-Mesoproterozoic stratigraphy of the southern McArthur Basin) and their potential connectivity. The 3D geological model (Figure 4) is used to inform the basin architecture that underpins groundwater conceptual models in the region, constrain aquifer attribution and groundwater flow divides. This interpretation refines a semi-continental geological framework, as input to national coverage databases and informs decision-making for exploration, groundwater resource management and resource impact assessments.</div><div><br></div><div>This metadata document is associated with a data package including:</div><div>·&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Nine surfaces (Table 1): 1-Digital elevation Model (Whiteway, 2009), 2-Base Cenozoic, 3-Base Mesozoic, 4-Base Neoproterozoic, 5-Base Roper Superbasin, 6-Base Isa Superbasin, 7-Base Calvert Superbasin, 8-Base Leichhardt Superbasin and 9-Basement.</div><div>·&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Eight isochores (Table 4): 1-Cenozoic sediments (Karumba Basin), 2-Mesozoic sediments (Carpentaria and Eromanga basins), 3-Paleozoic and Neoproterozoic sediments (Georgina Basin), 4-Mesoproterozoic sediments (Roper Superbasin including South Nicholson Basin and Beetaloo Sub-basin), 5-Paleoproterozoic Isa Superbasin, 6-Paleoproterozoic Calvert Superbasin, 7-Paleoproterozoic Leichhardt Superbasin and 8-Undifferentiated Paleoproterozoic above basement.</div><div>·&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Five confidence maps (Table 5) on the following stratigraphic surfaces: 1-Base Cenozoic sediments, 2-Base Mesozoic, 3-Base Neoproterozoic, 4-Base Roper Superbasin and 5-Combination of Base Isa Superbasin/Base Calvert Superbasin/Base Leichhardt Superbasin/Basement.</div><div>·&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Three section examples (Figure 4) with associated locations.</div><div>Two videos showing section profiles through the model in E-W and N-S orientation.</div>